153 research outputs found

    Vickrey Auctions for Irregular Distributions

    Full text link
    The classic result of Bulow and Klemperer \cite{BK96} says that in a single-item auction recruiting one more bidder and running the Vickrey auction achieves a higher revenue than the optimal auction's revenue on the original set of bidders, when values are drawn i.i.d. from a regular distribution. We give a version of Bulow and Klemperer's result in settings where bidders' values are drawn from non-i.i.d. irregular distributions. We do this by modeling irregular distributions as some convex combination of regular distributions. The regular distributions that constitute the irregular distribution correspond to different population groups in the bidder population. Drawing a bidder from this collection of population groups is equivalent to drawing from some convex combination of these regular distributions. We show that recruiting one extra bidder from each underlying population group and running the Vickrey auction gives at least half of the optimal auction's revenue on the original set of bidders

    Simple, optimal and efficient auctions

    Get PDF
    Proceedings of the 7th International Workshop, WINE 2011, Singapore, December 11-14, 2011.We study the extent to which simple auctions can simultaneously achieve good revenue and efficiency guarantees in single-item settings. Motivated by the optimality of the second price auction with monopoly reserves when the bidders’ values are drawn i.i.d. from regular distributions [12], and its approximate optimality when they are drawn from independent regular distributions [11], we focus our attention to the second price auction with general (not necessarily monopoly) reserve prices, arguably one of the simplest and most intuitive auction formats. As our main result, we show that for a carefully chosen set of reserve prices this auction guarantees at least 20% of both the optimal welfare and the optimal revenue, when the bidders’ values are distributed according to independent, not necessarily identical, regular distributions. We also prove a similar guarantee, when the values are drawn i.i.d. from a—possibly irregular—distribution.National Science Foundation (U.S.) (award CCF-0953960)National Science Foundation (U.S.) (CCF-1101491

    The advanced cyberinfrastructure research and education facilitators virtual residency: Toward a national cyberinfrastructure workforce

    Get PDF
    An Advanced Cyberinfrastructure Research and Education Facilitator (ACI-REF) works directly with researchers to advance the computing- and data-intensive aspects of their research, helping them to make effective use of Cyberinfrastructure (CI). The University of Oklahoma (OU) is leading a national "virtual residency" program to prepare ACI-REFs to provide CI facilitation to the diverse populations of Science, Technology, Engineering and Mathematics (STEM) researchers that they serve. Until recently, CI Facilitators have had no education or training program; the Virtual Residency program addresses this national need by providing: (1) training, specifically (a) summer workshops and (b) third party training opportunity alerts; (2) a community of CI Facilitators, enabled by (c) a biweekly conference call and (d) a mailing list

    Building the process-drug–side effect network to discover the relationship between biological Processes and side effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Side effects are unwanted responses to drug treatment and are important resources for human phenotype information. The recent development of a database on side effects, the side effect resource (SIDER), is a first step in documenting the relationship between drugs and their side effects. It is, however, insufficient to simply find the association of drugs with biological processes; that relationship is crucial because drugs that influence biological processes can have an impact on phenotype. Therefore, knowing which processes respond to drugs that influence the phenotype will enable more effective and systematic study of the effect of drugs on phenotype. To the best of our knowledge, the relationship between biological processes and side effects of drugs has not yet been systematically researched.</p> <p>Methods</p> <p>We propose 3 steps for systematically searching relationships between drugs and biological processes: enrichment scores (ES) calculations, t-score calculation, and threshold-based filtering. Subsequently, the side effect-related biological processes are found by merging the drug-biological process network and the drug-side effect network. Evaluation is conducted in 2 ways: first, by discerning the number of biological processes discovered by our method that co-occur with Gene Ontology (GO) terms in relation to effects extracted from PubMed records using a text-mining technique and second, determining whether there is improvement in performance by limiting response processes by drugs sharing the same side effect to frequent ones alone.</p> <p>Results</p> <p>The multi-level network (the process-drug-side effect network) was built by merging the drug-biological process network and the drug-side effect network. We generated a network of 74 drugs-168 side effects-2209 biological process relation resources. The preliminary results showed that the process-drug-side effect network was able to find meaningful relationships between biological processes and side effects in an efficient manner.</p> <p>Conclusions</p> <p>We propose a novel process-drug-side effect network for discovering the relationship between biological processes and side effects. By exploring the relationship between drugs and phenotypes through a multi-level network, the mechanisms underlying the effect of specific drugs on the human body may be understood.</p

    Motivic Eilenberg-Maclane spaces

    Get PDF
    This paper is the second one in a series of papers about operations in motivic cohomology. Here we show that in the context of smooth schemes over a field of characteristic zero all the bi-stable operations can be obtained in the usual way from the motivic reduced powers and the Bockstein homomorphism.Comment: This version is very close to the final version accepted to the publication in Publ. IHE

    Computational Detection and Functional Analysis of Human Tissue-Specific A-to-I RNA Editing

    Get PDF
    A-to-I RNA editing is a widespread post-transcriptional modification event in vertebrates. It could increase transcriptome and proteome diversity through recoding the genomic information and cross-linking other regulatory events, such as those mediated by alternative splicing, RNAi and microRNA (miRNA). Previous studies indicated that RNA editing can occur in a tissue-specific manner in response to the requirements of the local environment. We set out to systematically detect tissue-specific A-to-I RNA editing sites in 43 human tissues using bioinformatics approaches based on the Fisher's exact test and the Benjamini & Hochberg false discovery rate (FDR) multiple testing correction. Twenty-three sites in total were identified to be tissue-specific. One of them resulted in an altered amino acid residue which may prevent the phosphorylation of PARP-10 and affect its activity. Eight and two tissue-specific A-to-I RNA editing sites were predicted to destroy putative exonic splicing enhancers (ESEs) and exonic splicing silencers (ESSs), respectively. Brain-specific and ovary-specific A-to-I RNA editing sites were further verified by comparing the cDNA sequences with their corresponding genomic templates in multiple cell lines from brain, colon, breast, bone marrow, lymph, liver, ovary and kidney tissue. Our findings help to elucidate the role of A-to-I RNA editing in the regulation of tissue-specific development and function, and the approach utilized here can be broadened to study other types of tissue-specific substitution editing
    • …
    corecore